
Firebase Java Connector

User Manual

Lars J. Nilsson

Firebase Java Connector: User Manual
Lars J. Nilsson

Firebase Java Connector 1.10.5-SNAPSHOT

Published 06/27/2014
Copyright © 2009, 2010 Cubeia Ltd

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 Sweden License. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-sa/2.5/se/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

iv

Table of Contents
1. About Cubeia ... 1

Cubeia Ltd .. 1
Contact ... 1

2. Firebase Java Connector ... 2
Overview .. 2
Connecting .. 2
Receiving Packets ... 2
Sending Packets ... 3
Encryption ... 3
Handling IO errors ... 4
More Information ... 4

1

Chapter 1. About Cubeia
Cubeia Ltd

Cubeia Ltd is a distributed systems expert company, registered in England and operating through our office
in Stockholm, Sweden. We provide scalable, high availability systems and consultation based on our long
experience in the gambling and Internet application industry.

Our main product, Firebase, is a game agnostic, high availability, scalable platform for multiplayer online
games. It is developed by Cubeia Ltd and was built from the start with the gaming industry in mind. It
provides a simple API for game development using event-driven messaging and libraries for point-to-point
client to server communication.

Firebase is a server platform for developing and running online games. It scales from small installations
to extremely large, it is built to stand up to hard traffic and can be used for almost any type of game.

Contact
For further information, please contact Cubeia Ltd UK Filial in Stockholm. Bugs should be reported to
the Cubeia online support forums. If you do not have access to these forums please contact Cubeia Ltd
at the address below.

 Cubeia Ltd, UK Fillial
 Stora Nygatan 33
 11127 Stockholm
 Sweden

Email: info (at the cubeia domain)

Corporate Homepage: http://www.cubeia.com

Community Community: http://www.cubeia.org

http://www.cubeia.com
http://www.cubeia.org

2

Chapter 2. Firebase Java Connector
Overview

The Java Connector is a simple library used to connect to, and send, native Firebase packages from a client
to a Firebase server. It support native Firebase encryption and connection handshake.

Connecting
The connectors uses constructor injection of the encryption type to use, and optional handshake parameters.

[...]

/*
 * Example parameters
 */
int port = 4123;
String host = "localhost";
Encryption enc = Encryption.NONE;

/*
 * Create connector and connect
 */
Connector connector = new SocketConnector(host, port, enc);
connector.connect();

[...]

If a handshake is required by the server, this will have to be included in the constructor.

Receiving Packets
To receive packets from the server, a PacketListener should be implemented and added to the
connector before the connection is established. Like so:

[...]

/*
 * Example parameters
 */
int port = 4123;
String host = "localhost";
Encryption enc = Encryption.NONE;

/*
 * Create connector
 */
Connector connector = new SocketConnector(host, port, enc);

/*
 * Add listener

Firebase Java Connector

3

 */
connector.addListener(new PacketListener() {

 @Override
 public void packetRecieved(ProtocolObject packet) {
 // Do something here...
 }
});

/*
 * Connect
 */
connector.connect();

[...]

Packets are delivered to the listener using a dedicated thread. In other words, there will never be concurrent
delivery of multiple packets. Also, the packet ordering till be preserved.

Sending Packets
Sending packets is done via the send(ProtocolObject) method:

[...]

ProtocolObject o = //...
connector.send(o);

[...]

Encryption
The connector supports Java native SSL and Firebase native packet encryption. The encryption type is is
passed as an enumeration to the constructor. The enumeration has the following types:

NONE No encryption. This is the default value.

NAIVE_SSL SSL but where any server certificate is accepted. This is un-secure, but useful
for development.

SSL Full SSL, this is configured with Java system properties.

FIREBASE_NATIVE Native Firebase packet encryption.

The naive SSL should only be used for testing and development.

Should you need to configure SSL outside the system properties, you can extend the SocketConnector
and override its getSSLSocketFactory(Encryption) method.

If Firebase native packet encryption is used, the connector will try to wait for the encryption key exchange
to finish before returning from the connect() method. This interval is defaulted to 5 seconds (5000
millis) but can be configured before connect is called, like so:

[...]

Firebase Java Connector

4

/*
 * Example parameters
 */
int port = 4123;
String host = "localhost";
Encryption enc = Encryption.FIREBAE_NATIVE;
long wait = 10000; // 10 secs

/*
 * Create connector, set key exchange wait
 * period and connect
 */
Connector connector = new SocketConnector(host, port, enc);
((SocketConnector)connector).setKeyExchangeWait(wait);
connector.connect();

[...]

Handling IO errors
By default all errors will simply be logged by the connector. To handle IO errors on read, override the
handleReadException(Exception) method in a subclass.

More Information
Please refer to the community Wiki and message boards for more information about this component:
http://www.cubeia.org

http://www.cubeia.org

	Firebase Java Connector
	Table of Contents
	Chapter 1. About Cubeia
	Cubeia Ltd
	Contact

	Chapter 2. Firebase Java Connector
	Overview
	Connecting
	Receiving Packets
	Sending Packets
	Encryption
	Handling IO errors
	More Information

